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The effective permeability of composites embedded with self-similar fractal-like tree networks is studied.
The effective permeability tensor of the composites is derived and is found to be related to microstructures of
the networks. The present results show that the larger the ratio of successive branching channel diameters, the
higher the effective permeability; the higher the relative surface porosity of the tree networks and matrix, the
higher the effective permeability; the denser the tree networks, the lower the effective permeability; the longer
the branches, the lower the effective permeability. It is found that the dimensionless effective permeability of
composites scales as the diameter exponent by Ke,y

+ ���m, with ��4. It is also found that when m�1 and
n�4 /��1, the effective permeability Ke,y

+ scales as the iteration m, ln Ke,y
+ /m� ln�n�4 /��. The fractal-like tree

networks can significantly increase the effective permeability of the composites compared to the traditional
parallel nets under properly chosen structural parameters.
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I. INTRODUCTION

Recently, increased attention has been focused on the tree
networks because of their wide existence in nature such as
lungs, vasculatures, botanical trees, river basins, porous net-
works in oil-water reservoirs and their relevance to many
real systems �1–9�, and applications such as the world wide
web, the internet, social and energy transport networks
�10–12�. It has been shown that natural tree network systems
often give the minimal resistance and optimal vascular diam-
eter for driving the blood in mammals and water in plants.
These mechanisms are recently applied in design of energy
transport systems and cooling systems of electronic chips
due to increasing miniaturization of chips in microelectronic
equipments and the production of redundant heat.

Bejan �13–15� developed a solution to the fundamental
problem of how to design a flow path with minimum overall
resistance between one point and many points situated equi-
distantly on a line or circle centered at the point. The solution
was obtained by a sequence of optimization and organization
steps. It was shown that in an optimal design the flow path
forms a tree-shaped network. Bejan called this approach a
constructal theory, and emphasized the robustness of opti-
mized tree-shaped flows. Neagu and Bejan �16� showed that
the global thermal resistance between a volume and one
point could be reduced to unprecedented levels by shaping
the external boundary of each volume element. The resulting
architecture is a leaflike tree structure with high-conductivity
nerves and low-conductivity leaves. Bejan et al. �17� inves-
tigated the flow systems consisting of T- and Y-shaped as-
semblies of ducts, channels, and crosses, and achieved the
optimum thermodynamic performance by minimizing the
overall flow resistance encountered over a finite-size terri-
tory. Wechsatol et al. �18� utilized the constructal method to
investigate the optimal tree-shaped networks for fluid flow in

a disc-shaped body. Yu and Li �19� also used the constructal
method and principle to analyze the thermal conductivity of
fractal-like tree networks. The results indicate that the ther-
mal conductivity of the tree network itself may be less than
that of the original material by several orders of magnitude,
and fractal-like tree networks can significantly reduce the
thermal conductivity compared to an equivalent single cylin-
der. Xu et al. �20,21� systematically investigated the effec-
tive permeability of the fractal-like tree branched networks
between one point and a straight line, one point and a disc-
shaped area.

In this paper, we study the effective permeability of com-
posites with embedded self-similar V-shaped fractal-like tree
channel networks based on the constructal theory. This study
is different from previous works �17,18,20,21� because ma-
trix material is assumed to be permeable. We attempt to ob-
tain the analytic expression of the effective permeability ten-
sor of the composites. The results might find applications in
design of composites �such as space shuttle equipment� with
higher permeability, in oil recovery, and in cooling of elec-
tronic chips and/or components.

II. EFFECTIVE PERMEABILITY OF COMPOSITES WITH
EMBEDDED FRACTAL-LIKE TREE NETWORKS

A. Permeability of the fractal-like tree networks

For simplicity in this analysis, we start with the V-shaped
structure, a possible smallest dichotomous structure. Figure 1
shows the channel-matrix system with different branching
levels. Suppose a finite number of elements shaped as V start
to grow from the bottom of a matrix. These V-shaped assem-
blies are assumed to have a fixed area �volume�, length ratio,
and branching angle. With the network channel increasing,
the branching channels become more and more slender. If
the stems are assumed to be infinitely thin, the V-shaped
network structures as shown in Fig. 1 are fractals �22�. Since
there is a possible smallest element or unit structure that the
daughter branches may touch each other after finite repeats,
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the branch volume and branching angle are restricted to
avoid touching each other of the daughter branches. As
shown in Fig. 1�b�, tan �=b / �2a�, the opening or branching
angle � is in the range of 0–� /2 and is closely related to the
length and width of the matrix unit. Therefore, the branching
tree networks in this paper are called the fractal-like tree
networks.

We assume that the permeable matrix has a permeability
Km and the networks are embedded in the matrix, and the
channel walls of the networks are also permeable. The rate
flowing into the channel walls is equal to that flowing out of
the channel walls, so that the flow rates in the matrix and
inside the channels of the network do not interfere with each
other due to flow continuity. This implies that there is no net
contribution to the local flux through the walls. This assump-
tion is just for simplicity of analysis. An accurate analysis of
local flow flux through the permeable channel walls may
need to solve the Stokes equation for flow in channels and
the Brinkman equation for flow in matrix and will be ad-
dressed elsewhere. Figure 1�b� shows a V-shaped fractal-like
tree network embedded in matrix of width a, length b, and
thickness d0, and the Cartesian coordinate system is shown in
Fig. 1�b�. We assume that one-dimensional steady state and
laminar incompressible fluid flow into the composite along
the y direction �see Fig. 1�a��. Due to symmetry, we only
analyze the permeabilities in the positive x and y directions,
separately.

In order to derive the effective permeability of the com-
posite, we first derive the permeability of the V-shaped

fractal-like tree network channels. We assume that each
branch of the network is a smooth cylinder or channel. Fig-
ure 2 shows a typical structure of the “V-shaped” fractal-like
tree network at some intermediate level k, where dk and lk are
the channel diameter and channel length of the kth level
�k=0,1 ,2 , . . . �, respectively. The case of k=0 represents an
initial V-shaped structure, and each cylinder branches into n
�	2 is used in this work�. We define �= lk+1 / lk, the ratio of
length of the channel at the �k+1�th branching level to that at
the kth branching level, and therefore, we have lk= l0�k. Note
that the fractal dimension D is generated from n=�−D �22�.
So in Fig. 1�a� �=0.674, then D=1.74; in Fig. 1�b�
�=0.622, which results in D=1.46.

For the fractal-like tree networks and according to the
Darcy law, we have

Kx =
Qx
b

2Ax�px
, �1a�

Ky =
Qy
a

Ay�py
, �1b�

where Q, A, K, �p, and 
 are, respectively, the flow rate,
cross-sectional area of the networks, permeability, pressure
drop across the networks and the dynamic viscosity of fluid.
The subscripts x and y in Eq. �1� represent the corresponding
parameters along the positive x and y directions, respec-
tively.

The pressure drops �px and �py in Eq. �1� can be ex-
pressed as

�px = �p sin � , �2a�

�py = �p cos � , �2b�

where �p=�k=0
m �pk is the total pressure drop across the net-

work, and �pk is the pressure drop across the kth level net-
work channel, m �m=0,1 ,2 , . . . � is the total number of levels
of the network. According to Hagen-Poiseuille equation, �pk
is expressed as

�pk =
128


�

lkQk

dk
4 , �3�

where Qk is the flow rate in the kth level branching channel.
Then, due to Eq. �3�, Eq. �2� can be rewritten as

(a)

(b)

FIG. 1. �a� Schematic of composite with embedded fractal-like
tree networks, with fluid flowing into both matrix and networks, and
�b� a unit of the permeable matrix with an embedded V-shaped
fractal-like tree network.

FIG. 2. A typical structure of the “V-shaped” fractal-like tree
network at the kth level.
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�px =
128
 sin �

�
�
k=0

m
lkQk

dk
4 , �4a�

�py =
128
 cos �

�
�
k=0

m
lkQk

dk
4 . �4b�

The flow rates Qx and Qy can be written as

Qx = nkQk sin � , �5a�

Qy = nk+1Qk cos � . �5b�

Substituting Eq. �5� into Eq. �4� yields

�px =
128
Qx

�
�
k=0

m
lk

nkdk
4 , �6a�

�py =
128
Qy

n�
�
k=0

m
lk

nkdk
4 . �6b�

Inserting Eq. �6� into Eq. �1� yields

Kx =
��b/2�
128Ax

1

�
k=0

m
lk

nkdk
4

, �7a�

Ky =
n�a

128Ay

1

�
k=0

m
lk

nkdk
4

, �7b�

where the cross-sectional area Ax=ad0 and Ay =bd0, see Fig.
1�b�, and d0 is the diameter of the initial branching level 0,
which is equal to the thickness of the matrix. The length and
width of the matrix change with the branching levels m and
satisfy

a = �
k=0

m

lk cos � , �8a�

b = �
k=0

m

2lk sin � . �8b�

Substituting Eq. �8� into Eq. �7�, we get the permeability of
the fractal-like tree network,

Kx =
�d0

3

128l0

1 − �/�n�4�tan �

1 − ��/�n�4��m+1 , �9a�

Ky =
�d0

3

128l0

1 − �/�n�4�
1 − ��/�n�4��m+1

n

2 tan �
, �9b�

where the scale factor �=dk+1 /dk. Since the factor
�d0

3 / �128l0� in Eq. �9� is a constant and has the dimension of
permeability, we thus obtain the dimensionless permeability
of the network,

Kx
+ =

Kx

�d0
3/�128l0�

= tan �
1 − �/�n�4�

1 − ��/�n�4��m+1 , �10a�

Ky
+ =

Ky

�d0
3/�128l0�

=
n

2 tan �

1 − �/�n�4�
1 − ��/�n�4��m+1 . �10b�

It is clear that Kx
+ is equal to Ky

+ as �=� /4 in Eq. �10�, and
this is expected. Equation �10� also indicates that Kx

+ in-
creases with the increase of the branching angle �, while Ky

+

decreases at the same condition. These are reasonable be-
cause when � increases, the branching channel will incline
toward the positive x direction.

B. Effective permeability of composites with embedded
fractal-like tree networks

Now we have obtained the permeability of the networks.
In this section, we will derive the effective permeability Ke
of composites with embedded fractal-like tree networks.

For an anisotropic saturated porous medium, the perme-

ability tensor K� e is expressed as �23,24�

K� e = �Ke,x 0

0 Ke,y
	 , �11�

where Ke,x�Ke,y� is the effective permeability of the compos-
ite in the positive x�y� direction, which is also called the
principal permeability in the principal direction. Note that in
the above tensor, the off-diagonal elements are zero because
the axes used in the calculation are assumed to be oriented
along the principal directions.

Applying Darcy’s law to the composite, we write the per-
meabilities as

Ke,x =
Qe,x
b

2Ae,x�pe,x
, �12a�

Ke,y =
Qe,y
a

Ae,y�pe,y
, �12b�

where Qe,x�Qe,y� is the total flow rate through the composite
in the positive x�y� direction, Ae,x�Ae,y� is the cross-sectional
area of the composite in the x�y� direction, and �pe,x��pe,y�
is the total pressure drop across the composite in the positive
x�y� direction. Equation �12� divided by Eq. �1� results in

Ke,x

Kx
=

Qe,x

Qx

Ax�px

Ae,x�pe,x
, �13a�

Ke,y

Ky
=

Qe,y

Qy

Ay�py

Ae,y�pe,y
. �13b�

Yu and Lee �25� solved the Stokes equation for flow in
channels and the Brinkman equation in the region outside the
channels for permeability of porous fabrics by assuming that
the pressure drop along the channels is equal to that along
the medium outside channels. Therefore, this work also as-
sumes that �px=�pe,x and �py =�pe,y, and due to Ax=Ae,x,
Ay =Ae,y and �px=�pe,x, �py =�pe,y, Eq. �13� can be reduced
to
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Ke,x

Kx
=

Qe,x

Qx
, �14a�

Ke,y

Ky
=

Qe,y

Qy
. �14b�

Equation �14� suggests that the ratios of Ke,x /Kx and Ke,y /Ky
are exactly equal to those of Qe,x /Qx and Qe,y /Qy, respec-
tively. However, the flow rate is directly proportional to the
cross-sectional area when flow velocity is assumed to be
constant. Thus, we have

Ke,x

Kx
=

Qe,x

Qx
=

�AV,ex

�AV,x
= 1 +

�AV,mx

�AV,x
, �15a�

Ke,y

Ky
=

Qe,y

Qy
=

�AV,ey

�AV,y
= 1 +

�AV,my

�AV,y
, �15b�

where �AV,ex��AV,ey� is the cross-sectional area of the pore
spaces that the composite contains in the x�y� direction,
which contains the cross-sectional area �AV,mx��AV,my� of
the matrix pore spaces and the cross-sectional area
�AV,x��AV,y� of the branching channels in the x�y� direction,
i.e., �AV,ex=�AV,x+�AV,mx and �AV,ey =�AV,y +�AV,my.

In order to establish the relation between the cross-
sectional area of the matrix pore spaces and that of the
branching channels, we introduce �m,x��m,y� to represent the
surface porosity of the matrix material in the x�y� direction,
and �x��y� the surface porosity of the branching channels of
the networks in the x�y� direction. Note that in general
�m,x��m,y and �x��y. Thus, we can get

�m,x =
�AV,mx

Ae,x
, �m,y =

�AV,my

Ae,y
, �16a�

�x =
�AV,x

Ax
, �y =

�AV,y

Ay
. �16b�

Inserting Eq. �16� into Eq. �15� and with the aid of Ax=Ae,x
and Ay =Ae,y, we obtain

Ke,x

Kx
= 1 +

�m,x

�x
, �17a�

Ke,y

Ky
= 1 +

�m,y

�y
. �17b�

Defining 
x=
�m,x

�x
�
y =

�m,y

�y
� as the relative surface porosity of

the matrix material with respect to the fractal-like tree net-
works in the x �y� direction, Eq. �17� can be expressed as

Ke,x

Kx
= 1 + 
x, �18a�

Ke,y

Ky
= 1 + 
y . �18b�

Substituting Eq. �9� into Eq. �18� yields the effective perme-
ability Ke,x and Ke,y,

Ke,x =
�d0

3�1 + 
x�tan �

128l0

1 − �/�n�4�
1 − ��/�n�4��m+1 , �19a�

Ke,y =
�d0

3

128l0

�1 + 
y�n
2 tan �

1 − �/�n�4�
1 − ��/�n�4��m+1 . �19b�

Since the factor �d0
3 / �128l0� in Eq. �19� is a constant and has

the dimension of permeability, we get the dimensionless ef-
fective permeability of the composites,

Ke,x
+ =

Ke,x

�d0
3/�128l0�

= �1 + 
x�tan �
1 − �/�n�4�

1 − ��/�n�4��m+1 ,

�20a�

Ke,y
+ =

Ke,y

�d0
3/�128l0�

=
�1 + 
y�n
2 tan �

1 − �/�n�4�
1 − ��/�n�4��m+1 .

�20b�

Substituting Eq. �20� into Eq. �11� yields

K� e
+ = �Ke,x

+ 0

0 Ke,y
+ 	 = 
�1 + 
x�tan �

1 − �/�n�4�
1 − ��/�n�4��m+1 0

0
�1 + 
y�n
2 tan �

1 − �/�n�4�
1 − ��/�n�4��m+1

� , �21�

where K� e
+=

K� e

�d0
3/�128l0� is the dimensionless effective perme-

ability tensor of the composite. Equation �21� presents the
dimensionless total effective permeability tensor of compos-
ites with an embedded V-shaped fractal-like tree network af-
ter m iterations. This model is closely related to the structural
parameters of the network, i.e., 
, �, �, �, and m.

C. Compared to the traditional parallel channel net

In order to study the unique influence of the fractal-like
tree networks on the channel-matrix composite system, we
compare our model with the traditional parallel channel net
under the same relative surface porosities 
x and 
y. To this
end, we assume that there are nm+1 �nm+1 is also the total
number of outlets in the fractal-like tree networks after m

CHEN et al. PHYSICAL REVIEW E 75, 056301 �2007�

056301-4



iterations� parallel channels with the unified diameter d and
tube length b/2 or a, embedded in the matrix material in the
x or y direction. These parallel channels have the same total
volume as the fractal-like networks.

The total volume of the parallel channels arranged in the x
direction can be expressed as

Vx = nm+1�d2�b/2�/4 �22�

and the total volume of the tree network is

Vt = �
k=0

m

nk+1��dk/2�2lk =
�d0

2l0n

4

1 − �n�2��m+1

1 − n�2�
. �23�

Since the total volume of the parallel channel net and the tree
network is equal, combining Eq. �22� and Eq. �23�, we can
obtain the diameter of a parallel cylinder

d2 =
d0

2

nm sin �

1 − �

1 − �m+1

1 − �n�2��m+1

1 − n�2�
. �24�

Under the fully developed laminar flow, the permeability of
parallel channels is �24�

K =
d2

32
. �25�

Substituting Eq. �24� into Eq. �25� yields

K =
d0

2

32nm sin �

1 − �

1 − �m+1

1 − �n�2��m+1

1 − n�2�
. �26�

Equation �26� describes the permeability for flow through
parallel channels.

Since the matrix material has the permeability Km, by uti-
lizing Eq. �18� and Eq. �26�, we can get the effective perme-
ability of a composite with an embedded traditional parallel
net �in the x direction�

Kp,x =
d0

2�1 + 
y�
32nm sin �

1 − �

1 − �m+1

1 − �n�2��m+1

1 − n�2�
. �27�

In Eq. �27�, the factor d0
2 /32 is the permeability of a single

cylinder at initial level 0, Eq. �27� can be thus expressed as
the dimensionless form

Kp,x
+ =

Kp,x

d0
2/32

=
�1 + 
x�
nm sin �

1 − �

1 − �m+1

1 − �n�2��m+1

1 − n�2�
. �28a�

Similarly, we can obtain the dimensionless effective perme-
ability for a composite with an embedded traditional parallel
net in the y direction as follows:

Kp,y
+ =

�1 + 
y�
nm cos �

1 − �

1 − �m+1

1 − �n�2��m+1

1 − n�2�
. �28b�

III. RESULTS AND DISCUSSIONS

In a composite with embedded fractal-like tree networks,
both the matrix material and the microstructures of the net-
works determine the behavior of the composite.

Equation �20a� divided by Eq. �20b� yields

Ke,x
+ /Ke,y

+ =
2�1 + 
x�tan2 �

n�1 + 
y�
. �29�

Equation �29� suggests that Ke,x
+ increases while Ke,y

+ de-
creases as branching angle � increases in the range of
0–� /2. When �=45° and 
x=
y �i.e., the branching chan-
nels are isotropic growth, and the relative surface porosity is
identical in the x and y direction�, Ke,x

+ is equal to Ke,y
+ . In this

case, fluid homogeneously flows through the network-matrix
composite. Moreover, the effective permeability increases
with the increase of the relative surface porosity. Figure 3
clearly shows these features.

Figure 4 shows the dimensionless effective permeability
Ke,y

+ versus the diameter ratio � at different �. The results
denote that the dimensionless effective permeability Ke,y

+ in-
creases with the increase of diameter ratio � and decreases
with the increase of length ratio �. This is expected because
a higher diameter ratio � implies the larger daughter branch-
ing channels, leading to the lower flow resistance and higher
permeability. On the contrary, a higher length ratio � means
the longer branching channels, leading to the higher flow
resistance and lower permeability. It is also surprisingly
found from Fig. 4 that the dimensionless effective permeabil-
ity Ke,y

+ scales as the diameter exponent by Ke,y
+ ���m when

��0.707. From the figure we can get the approximate rela-
tion ln Ke,y

+ ��m ln n
� +4m ln �� as n�4 /��1 and ��0.707.

This result means that the term ln Ke,y
+ is directly proportional

to the term 4m ln �, and which shows that the constant � is
close to 4.
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FIG. 3. �Color online� Ke,x
+ /Ke,y

+ versus � at different 
x and

y.

0.5 0.6 0.7 0.8
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

K
+ e
,y

β

γ=0.55
γ=0.61
γ=0.70
γ=0.79

m=8

FIG. 4. �Color online� Ke,y
+ versus diameter ratios � at different

length ratios � when 
y =0.65, �=0.58.
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Figure 5 presents the dimensionless effective permeability
Ke,y

+ versus iteration m under fixed � and different �. From
Fig. 5 we can find that the branch iteration number has sig-
nificant effect on the effective permeability. When the itera-
tion number m increases, the network becomes denser, and
this will increase the flow resistance and lead to the lower
permeability. Figure 5 also denotes that the higher the ratio
�, the less the influence of iterations m on Ke,y

+ at the same
length ratio � �=0.61�, the slope of the curve at �=0.55 is
larger than that of the curve at �=0.79. Furthermore, the
curve in Fig. 5 shows a scaling behavior between m and Ke,y

+ .
This can be explained that Ke,y

+ isproportional to the term
n�4 /� when m�1 and n�4 /��1, and we have the approxi-
mate relation ln Ke,y

+ /m� ln�n�4 /��. On the contrary, when
n�4 /��1, Ke,y

+ is proportional to a constant and no scaling
behavior exists.

Figure 6 compares the dimensionless effective perme-
abilities in the positive y direction versus diameter ratio �
between the two models at different values of �. It is inter-
estingly found that when ��0.61, the effective permeability
Ke,y

+ is higher than Kp,y
+ at �=0.55 in Fig. 6�a�. The similar

phenomenon is found in Fig. 6�b�, i.e., the values of Ke,y
+ are

higher than those of Kp,y
+ as ��0.67. This can be explained

that the flow resistance of the branching channel networks is
greater than the parallel channel networks at the less diam-
eter ratio �. However, since the connectivity of branching
channel networks exceeds the parallel channel networks, the
flow resistances of the branching channel networks decrease
as � increasing. This results in the effective permeability Ke,y

+

higher than Kp,y
+ . Figure 6 also shows the rule about the value

of diameter ratio � at the intersection point, which increases
with the increase of the length ratio �.

Figure 7 compares the dimensionless effective perme-
abilities in the positive y direction versus diameter ratio �
between the two models at different branching angles �. We
can also find that the intersections of these curves change
with branching angle changing. For example, see Fig. 7�a�,
when �=0.58 and ��0.67, the effective permeability Ke,y

+ is
higher than Kp,y

+ . Furthermore, we find the values of � at the
intersection points increase with the increase of branching
angle �.

Figure 8 compares the dimensionless effective perme-
abilities in the positive y direction versus diameter ratio �
between the two models when iterations m change. From
Fig. 8 it can be seen again that the permeability Ke,y

+ is higher
than Kp,y

+ when diameter ratio � is higher than a certain
value, e.g., ��0.73 for iteration m=4 in Fig. 8�a� and
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��0.67 for iteration m=8 in Fig. 8�b�. Figure 8 also reveals
that the value of � at the intersecting point decreases with the
increase of iteration m. These results may be important for
design of the proper matrix material and the structural pa-
rameters of the branching networks.

Figure 9 compares the dimensionless effective perme-
abilities in the positive y direction between different models.
It is found that effective permeability Ke,y

+ is lower than Kp,y
+

at �=0.55 in Fig. 9�a�. But when diameter ratio � is assigned
a larger value, for example, �=0.68 in Fig. 9�b�, the perme-
ability Ke,y

+ is remarkably higher than Kp,y
+ . The higher value

of �, a much higher permeability Ke,y
+ than Kp,y

+ is found.
Figure 10 presents the effective permeabilities in the posi-

tive y direction versus iterations m between different models.
As expected, when length ratio � and diameter ratio � are at
lower values �e.g., �=�=0.55�, the dimensionless effective
permeability Ke,y

+ is lower than Kp,y
+ , see Fig. 10�a�. While �

and � are assigned the larger values �e.g., �=�=0.68 in Fig.
10�b��, the permeability Ke,y

+ is higher than Kp,y
+ . From Figs. 9

and 10 we see that the dimensionless effective permeability
Ke,y

+ may be much higher than Kp,y
+ under properly chosen

microstructural parameters of the networks.
Similarly, we can find the behaviors of the effective per-

meability Ke,x
+ in the positive x direction.

IV. CONCLUDING REMARKS

In this paper, we have studied the effective permeabilities
of composites with embedded self-similar fractal-like tree
networks. We have found that the effective permeability is

closely related to the microstructures of the branching net-
works: the effective permeability increases with the increase
of the diameter ratio � or the relative surface porosity be-
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tween matrix and tree networks; and the effective permeabil-
ity decreases with the increase of length ratio � as well as
iteration m. It is surprisingly found that when diameter ratio
��0.707, the dimensionless effective permeability of com-
posites scales as the diameter exponent by Ke,y

+ ���m, with
��4. And it is also found that when m�1 and n�4 /��1,
the effective permeability Ke,y

+ scales as the iteration m,
ln Ke,y

+ /m� ln�n�4 /��. The results have shown that at the
properly chosen length ratios �, the fractal-like tree networks
can significantly increase the effective permeability of com-
posites compared to the parallel channel nets. The effective
permeability of composites with embedded fractal-like tree

networks may be higher than that of composites embedded
with traditional parallel nets when � is larger than a certain
value, depending on the branching angle, relative surface po-
rosity, length ratio, and iteration m.

Our results suggest that properly choosing the structure
parameters of the networks is urgent in design of composites
and cooling systems, and in analysis of networks.
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